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*Direct-Current ReSIStIVIty Surveys Time-lapse EM borehole logging in observation wells showed that sodium permanganate injectate from the injection wells is initially transported laterally within 1 to 1.5 m (3 to 5 ft) thick layers and
Two Dimensional Field Surveys then spreads vertically downward, due to density differences between the injectate (specific gravity of about 1.1 %) and groundwater. Because the EM log can measure outside the solid polyvinyl chloride
(PVC) wall of the well, it can detect the spread of the injectate through the full penetration of the well and not just the screen interval.

In situ chemical oxidation (ISCO) treatment with an electrically conductive injectate, like sodium or po-
tassium permanganate, provides a strong electrical signal for tracking of injectate transport using time-
series geophysical surveys including direct current (D.C.) and electromagnetic (EM) methods. Geophysi-

contaminant distribution and remediation have been shown to be an important factor in mapping recalcitrant PCE concentrations in OUA1. -
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Electrical Conductivity, mS/m so that a better assessment can be made of target zone treatment.
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